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SECTION I. INTRODUCTION

The basic development of an integrated d-c power amplifier was started under
Contract NAS 8-11270. The initial studies were reported under task order ASTR-
G-GAC-9 of that contract. Development and fabrication of prototype pulse width
modulator and power driver integrated circuits were continued by Norden Division
of United Aircraft under Goodyear Aerospace direction, through prime contract
NAS 8-20205.

This report describes the test procedures used to evaluate the pulse width modu-
lator (PWM) and power driver portions of the amplifier and reports the results of
tests performed on prototype integrated circuit versions from Norden. Although
several types of PWM's were tested, the integrated version was of prime concern.
Tests on the two sections include both static and dynamic tests. The static tests
were performed with the Tektronix 575 Transistor Curve Tracer. Dynamic test-
ing included individual functional tests and functional tests of the combined ampli-

fier at three ambient temperatures.

One purpose of the test program was to evaluate individual amplifier components
prior to constructing an integrated version of the PWM and finalizing the design
of the power driver. PWM design approaches included the use of all NPN tran-
sistors (Norden master breadboard chips), the use of PNP transistors for the
NAND function (Texas Instruments (TI) master bar), and the use of available inte-
grated circuits with discrete components (Fairchild ¢ A 709 and uA 711). Several
preliminary designs of the power driver were tested. Results of the tests were

conveyed to Norden so that modifications could be made and evaluated.
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SECTION II. PULSE WIDTH MODULATOR

A. GENERAL

Although several techniques for developing a pulse width modulation scheme were
studied, the all-NPN version using two NM 3025 master breadboard chips (Figure
1) was the one tested most thoroughly. A PWM was also designed using the TI
master slice bar, which has two vertical PNP transistors per bar. This approach
was not satisfactory because of voltage breakdown on the chip. Two discrete com-
ponent units were designed and tested. One unit used a uA 709 and the other a

A T711.

The operation of the integrated pulse width modulator is described in Appendix A

of this report.

B. TESTING AND EVALUATION OF CHIPS

The two Norden NM 3025 master breadboard chips with special aluminum overlay
interconnections were supplied in the TO-84 flat pack (14 lead, 1/4- x 1/8-inch)
with the stipulation that all testing and evaluation wastobe done by GAC. These units
were subjected to a d-c test on the Tektronix 575 Curve Tracer. Acceptance of

the Norden devices was based on the results of the static tests. Following are the

procedures used to test the two chips.

1. Testing Circuit No. 1
a. Observe the characteristics between pin 8 and pin 14 in the forward and
reverse directions.
(1) With pin 8 positive two breaks occur, one at 7.5 volts and one at 15
volts. Maximum voltage at 5 mA is 35 volts.
(2) With pin 8 negative, observe two diodes into approximately 3 k& re-
sistance.
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R4,5,27,28,29,30
1.5 kQ

MASTER CHIP CIRCUIT NO. 1 dﬁ)

Rs,7 R28,29
2.5kQ 2.5 kQ

RONOSR
Q Q3 _@ Q4 Qs

MASTER CHIP CIRCUIT NO, 2

Figure 1. NM 3025 Master Breadboard Chips Used in
All-NPN Version of the PWM
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b. Measure the resistance between pin 8 (positive) and pins 1, 4, 10, and
12 successively.
c. Observe diode and measure resistance between pin 7 and pins 2, 3, 11,

and 13 successively.

2. Testing Circuit No. 2
a. Observe the characteristics between pin 14 and pin 7 with pin 14 positive,
and verify that no breakdowns occur.
b. Observe transistor characteristics and measure beta at 3 mA of Q1, Qg,
Q4, and Qs.
c. Measure the resistances in the forward direction between pin 14 and pins
4 and 8.

3. Design Criteria for Chips

The design criteria for the circuits are illustrated in Figures 2 through 6, which
show typical curves for the tests to be performed. Acceptable limits of the ab-
solute value of resistance are +20 percent. However, a match of 5 percent is re-
quired of similar resistors on the same chip. The minimum breakdown voltage is
35 volts, measured from the most positive terminal to the most negative terminal
of each circuit. Figure 4 shows the requirement for a base-emitter drop in series
with the resistance. Checks were made from all bases to verify the base-emitter
drop. The transistor characteristics (Figure 6) are observed for leakage, break-

down, and gain. The minimum gain is 50 at 1 mA.
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Figure 2. Circuit No. 1 -
Typical Curve of Forward
Characteristics (Pin 8 to
Pin 14)

Figure 3. Circuit No. 1 -
Forward Characteristics of
Collector Resistors - Pin 8
to Pins 1, 4, 10, and 12
(with Pin 8 Positive)
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Figure 4. Circuit No. 1 -
Forward Characteristics of
Emitter Resistors- Pin 7 to
Pins 2, 3, 11, and 13 (with
Pin 7 Negative)

Figure 5. Circuit No. 2 -
Forward Characteristics of
Collector Resistors with Pin
14 Positive
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( I=601A

1=40pA

COLLECTOR (mA)

I=20uA

0 10 20
SUPPLY (VOLTS)

Figure 6. Circuit No. 2 - Typical Transistor Characteristics

C. CURVE TRACER TEST RESULTS

The results of the curve tracer tests are shown in Tables I and II. Results show
that all but two units received passed initial tests. The acceptable units were

mounted on test boards for the functional tests.

Four circuit No. 2 units were rejected in the initial tests. One unit did not have
resistor matching within the required 5 percent. Unit 5 was rejected because of
an inoperative transistor. Units 10 and 11 had very leaky transistors. The ac-

ceptable units were mounted with circuit No. 1 units for functional tests.
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Table II. Curve Tracer Test Results for Chip Circuit No. 2

.

Pin 14 to Pin 4 | Pin 14 to Pin 8 D-C Current Gain
Unit No. k) ®Q) Q Qs & Qs
1(a) 0.83 2.1 150 100 150 150
2 2.5 2.5 120 125 125 140
3 2.5 2.5 100 100 150 150
4 2.5 2.5 125 150 150 150
5(a) 2.5 2.5 --- 125 100 125
6 2.5 2.5 180 150 180 200
7 2.5 2.5 200 200 150 150
8 2.5 2.5 65 65 65 65
9 2.5 2.5 125 175 150 175
10(a) 2.5 2.5 --- ——- --- ---
11(a) --- --- —-- —-- —-- —--
12 2.5 2.5 150 175 200 150

aAUnits 1, 5, 10, and 11 rejected.

D. DYNAMIC TESTS

Operational tests were performed on the four PWM versions. These included the
integrated PWM using the Norden master chips, a discrete component model of

the integrated version, a model using two 4A 711 dual comparators, and a model
using two 4 A 709 operational amplifiers. All units were assembled on breadboards

with the triangle wave generator positive supply package (see GER-1218985).

The tests performed were designed to establish the operating parameters for the
integrated PWM and to verify operation of the discrete component versions. The

offset and pulse overlap at null could be adjusted with two select-at-test resistors
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for both the integrated PWM and the discrete component PWM 's. No attempt was
made to adjust the offset and pulse overlap of the uA 711 and uA 709.

Figure 7shows a schematic of the integrated PWM. The triangle wave generator
positive supply regulator package provides the regulated +15 volts and drives the
Bourns transformer to form the triangle wave input. Resistor Rq gAT adjusts

the offset and Ry gaoT sets the pulse width at null (see Figure 7). Schematics of
the discrete component models are shown in Figures 8 and 9.

Tests performed to establish values of R1 goT and R SAT and to evaluate opera-
tion of the integrated PWM and the discrete component models are as follows:

(1) Adjust the triangle wave generator to 250 mV pp on the secondary of the

transformer.

(2) Verify +15 (+0.5) volts at the regulator output and -15 volts at the nega-
tive supply.

(3) Connect a 1202 resistor at Ry goT-

(4) Connect a 1002 resistor at Ry gaT-

(5) Set the input to center tap of transformer to zero volts.
(6) Connect 10 kQ resistors from ground to pins 5 and 8.

(7) Apply power and verify pulse output at pins 5 and 8 by varying the input

volatage approximately +20 mV.
(8) Pulse output should be 6 (+1) volt.

(9) Adjust Ry gaT to give simultaneous outputs of 6 usec from pins 5 and

8 (the input voltage may have to be varied).

(10) Adjust Ry gaT to give simultaneous outputs with the input at zero volts.

10
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Later tests revealed that it is more convenient to make the value of Ry gaoT equal
to a fixed value approximately one-fourth the resistance of thetransformer second-

ary resistance and to adjust for zero by inserting a small d-c correcting current.

The tests performed to evaluate the uA 711 and x#A 709 PWM's were designed to
observe the general technique. No attempt was made to adjust for overlap or off-

set.

After each PWM had been checked for proper operation, it was connected to a dis-
crete component power driver to verify the PWM drive capabilities. The tests of

the integrated PWM's resulted in the selection of the two select-at-test resistors.

14
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SECTION III. POWER DRIVER UNIT

A. DESIGN CRITERIA

The power driver consists of two identical special integrated chips and two PNP
transistor chips. A detailed presentation of the development program may be
found in GER 11752S6 . The operation of the power driver is described in Appen-
dix B of this report.

The driver circuit (Figure 10) was designed to switch 2 amperes at 28 volts. To
minimize the internal power dissipation of the device, the maximum saturation
resistance must be less than 0.3% for each power switch. At the saturation con-

rent the power section of the Darlington should not be saturated.

B. CURVE TRACER TESTS

Evaluation and acceptance tests were performed on the Tektronix 575 Curve

Tracer according to the following test instructions (refer to Figure 43 in Section IV).

(1) Testing Saturation Resistance of Bottom Switch

a. Connect a 22-1/2 volt battery between pin 9 and pin 7 with pin 9
positive, pin 7 ground.

b. Connect the emitter terminal of Tektronix 575 Curve Tracer to
ground and the collector terminal to pin 6.

c. Set horizontal scale to 0.5 volts/division and the vertical scale to
0.5 amperes/division. The internal collector resistor should be
set to 12 and the collector voltage on positive.

d. Increase the collector voltage until the curve begins to flatten toward

the horizontal. This is the saturation point.

15
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e. Record the shape of the curve, specifically noting the voltage and
current at the two knees. This will allow calculation of the satur-
ation resistance.

f. Reverse the polarity of the collector voltage and decrease voltage
until collector current is 2.5 amperes.

g. Record the curve and note the current and voltage at the knee.

(2) Testing Saturation Resistance of Top Switch

a. With the 22-1/2 volt battery connected as in the previous test, con-
nect the 10 volt battery tap to pin 8.

b. Connect the emitter terminal of the curve tracer to pin 9 and the
collector terminal to pin 6.

Set the horizontal scale to 0.5 volts/division and the vertical scale
to 0.5 ampere/division. The internal resistance should be set at
12 and the collector voltage on negative.

d. Increase the voltage until the curve begins to flatten (saturation
point).

e. Record the curve, noting the current and voltage at the two knees
of the curve.

f. Reverse the polarity of the collector voltage and increase the volt-
age until the collector current is 2.5 amperes.

g. Record the curve and note the current and voltage at the knee.
C. CURVE TRACER TEST RESULTS

Figure 11 is a schematic of the power driver breadboard, and Figure 12 shows
measured saturation resistance when the discrete component driver was tested.
The results of the curve tracer tests of each unit are shown in Figures 13 through
26. The saturation resistance of each driver was calculated and is shown in Table
III.

17
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The method used to calculate the resistance of the drivers is as follows:

I (mA)
)
9-5 i
TO PINS !
V] 6 AND 2 -
— T 2 TEKTRONIX —= (VOLTS)
] 80— 0 o —o4 575
| e
O -0 o,
7-3 =0.350
BOTTOM HALF OF SWITCH
TEKTRONIX
575 I (mA)
A
9-5 E C
O -0 (o]
y R1 T R2
= , = (VOLTS)
T 6 2 _
0 (o] r
|
TO PINS |
6 AND 2 '
7-3

R:].25- 0.75:0.33(1

TOP HALF OF SWITCH 2

18
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Table HOI. Saturation Resistance of Units

Unit . Saturation Resistance (DHMS)
Number Side A Side B
Top Half Bottom Half Top Half Bottom Half
1 0.7 0.5 0.7 0.6
7 0.33 0.35 0.4 0.5
8 Open Open 0.4 0.5
9 0.5 0.53 Shorted High resistance in
both directions
11 0.37 0.5 0.3 0.5
12 0.3 0.35 0.3 0.33
13 0.3 0.47 0.24 0.
14 0.32 0.5 0.4 0.
15 0.4 0.36 0.46 0.
16 0.25 0.45 0.25 0.46
17 0.33 0.4 0.4 0.4

Several of the first drivers received from Norden were tested dynamically before
the static test was devised. These devices typically failed at low average current
levels. Units number 10, 11, and 14 all displayed low saturation current charac-
teristics and all units displayed a higher saturation resistance than desired. How-
ever, this results only in additional heating of the device. If the heat is dissi-
pated through a heat sink, there should be no serious problem. All units were
mounted on PWM breadboards.

A summary of the testing and application of the power driver units is given in
Table IV.

19



pieOqpeadg JOALX(J Jamoq ‘] 9InJ1q

7

CORPORATION

GOODYEAR AEROSPACE

: "

—

00€ENT

006ZNZ

.

UreLt

RN
3

0ELENI

5,

EmNZNI
1 PEEINT

ru | M
S ® CITE SN
[§)0744
‘a
[4%:74314

3QOYLINN S06ZNZ
U0sL M

o- L |

-

A

U187l

e




GOODYEAR AEROSPACE

CORPORATION

GER-12189S8
SIDE A SIDE B
(See figure 11) PIN 6 (See figure 11)
2 PIN4
6.5V ‘f ° Ic 6.5V
L 3 5
61 _= 0—0 oo gsg 61
PIN 4 T 4 6 PIN 6
- 54 J: e 54
aq ! 4t
BOTTOM SWITCH
AMP 31 (SEE FIG 11) AMP 3¢
2+ 24
| + | +
3 -2 -y o 2 3 -3 -2 T2 3
T VOLTS VOLTL
_2.;
_3..
-4 +
_5._
_GJL
7.4V T 7.4V
8.2 mé’ [ j € —
67 = 3 o o 6
PIN 4 viesy L2 8 5 575 ] PIN 6
E— 54 : I ¢ 5¢ —
—O0- o—
ad PIN 6 al
TOP SWITCH PIN 4
AMP 34 (SEE FIG 1) AMP 34
24 24
| 4+ | 4+
-3 2 2 3 -3 2 ) T2 3
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Table IV. Power Driver Units

Unit* Date Tested Comments

1 28 July Unit tested individually at NASA. Returned and
mounted on PWM breadboard No. 4 with Bourns
transformer.

2 --- Tested at NASA. Diodes destroyed on curve tracer
test.

3 --- Tested at GAC with L. Caprio. Oscillation at null
resulted in failure. Can opened and used for
display.

7 28 July and Tested at NASA individually. Returned and mounted

21 September on PWM breadboard No. 6 with Bourns transformer.

Breadboard sent to NASA for testing. Driver half
destroyed during functional test. Remounted in neg-
ative power supply breadboard and sent to NASA with
loop 11 November.

8 13 June One side opened during dynamic test with PWM bread-
board. Remaining portion failed during breakdown
test at voltage in excess of 100 volts.

9 13 June One half failed while operating with PWM. Returned
to Norden for evaluation.

10 13 June Improper connection resulted in partial failure. One
half failed while being tested with PWM breadboard.
Good half used for negative power supply breadboard.

11 22 July Mounted on PWM breadboard No. 5 with DIT. Sent to
NASA 25 July.

12 27 July Unit was dropped causing the substrate to break loose.
Unit returned to Norden.

*Units 1, 2, 3, 7, 8, 9, and 10 were received and tested dynamically before the
static evaluation was devised.
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Table IV. Power Driver Units (Continued)

Unit* Date Tested Comments

13 1 August Mounted on PWM breadboard No. 1 with Bourns
transformer. Sent to NASA 16 October.

14 29 July Mounted on PWM breadboard No. 9 with DIT; sent to
NASA. Three-fourths destroyed in functional test.

15 6 September Replaced unit No. 7 on PWM breadboard No. 6.
Sent to NASA with loop 11 November.

16 6 September Replaced unit No. 14 on PWM breadboard No. 9.
Sent to MIT for radiation testing.

17 6 September Mounted on PWM breadboard No. 8 with Bourns

trasformer. Sent to NASA 16 October.

*Units 1, 2, 3, 7, 8, 9, and 10 were received and tested dynamically before the
static evaluation was devised.

'Y 0
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SECTION IV. PWM AND POWER DRIVER TESTING

A. GENERAL

In this portion of the test and evaluation program, the integrated power drivers
were mounted on the PWM breadboards. The purpose of the tests was to evaluate
the overall performance of the amplifier. Problem areas were studied as they

occurred, and the circuits were changed to remedy faults.

Several problems that were encountered early in the program required changes in
the power driver and the integrated PWM. Where possible, these changes were
made by Norden. However, it was necessary to breadboard several NM 3025 chips

for the PWM since the magnitude of the revisions did not warrant a special overlay.

The tests evaluated the operation of the amplifie'r over a temperature range of 0
to 70°C. Offset, linearity, and temperature tracking characteristics were ob-
served and measured. Where necessary, components were changed to improve

performance. Results of these improvements are shown in the test results.
B. TEST RESULTS

Each PWM was set up and tested, first with the discrete component driver and
thenwith the integrated version of the power driver. The first two prototypes that
were tested failed before useful data could be obtained. Analysis of why the units
failed revealed several areas where problems could occur and improvements
should be made. The three major areas involved relate to the method employed
in laying out the chips in the modified TO-53 can and the design and layout of the

integrated power driver chip.

To aid in carrying the large amounts of current involved, the mounting substrate
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metalization area was used as a common point for the +28-volt supply. Review-
ing possible causes for the failure of the first two units brought out the possibility
that tying the +28-volt points to the mounting substrate could lead to the following

two problems:

(1) Capacitive coupling of power supply transients to oither parts of the

integrated circuit.

(2) Creation of a possible resistive path between the PNP emitter and the
positive supply, which could cause a sufficient feedback voltage to allow

the transistor to lock in the "on'' state.

Also brought out was the impression that including the 330 2 resistor shown in
Figure 10 in the same moat as the power transistors and diodes could lead to
difficulties, as the inductive load could force the output to be one diode drop more
positive than the +28-volt supply. However, neither of the units examined revealed

any indication that this had occurred.

Temperature effects were also considered. It was determined that if an increase
in temperature due to power dissipation should cause the collector-to-base leak-
age current to approach 2 mA, the unit would fail. However, it was felt that using
the modified TO-53 can with a heat sink would eliminate the problem, since the
heat dissipation capabilities of the TO-53 can with the minimum heat sink are

more than adequate for the power levels involved.

It was decided to change the interconnection of the chips so that the mounting
substrate was brought out to a separate pin, which could then be grounded. The
PNP connections were also changed so that they were tied directly to the larger

power driver chip.

Since the integrated version of the power driver was designed to give faster turn-

on and turn-off times, the power dissipation in the transients is reduced from that
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of the discrete component version. However, the faster dI/dt also results in a
larger L dI/dt power supply transient term. It was found that if the power supply
was kept at 28 4 volts, the unit operated properly. If long power supply leads
are used, it is recommended that a small energy source (capacitor) be attached
close to the power driver. Additional decoupling of the +28-volt supply between
the power driver and the PWM was found to help minimize the effect of power
supply spikes. Small capacitors were added to the input of the power driver to

improve the linearity of the PWM output.

Figure 27 shows how the dead-zone characteristic of the combination of the PWM
and power driver driving a load is affected by the overlap adjustment. As antici-

pated, optimum results are obtained when the overlap is approximately 6 u sec.

The temperature compensation method used by MSFC consisted of a sensistor

in the emitter section of the PWM. It was concluded that similar performance
could be obtained with the use of two diodes in the emitter section of the PWM. A
master breadboard was designed and built with several diodes available for use.
Tests were conducted using one, two and three diodes for temperature compensa-
tion. Figure 28 shows that as anticipated the two-diode configuration gave ade-
quate temperature compensation. Figure 29 shows the performance without tem-
perature compensation and pulse width overlap. An explanation of the compensa-
tion method used is found in Appendix A. An actual torquer load was used and the
results of the test are shown in Figure 30. A comparison of Figures 28 and 30

shows that results are very similar.

In addition to the DIT 37 transformer used, other transformers were evaluated for
possible application in the PWM circuit. Both the DIT 37 and the Bourns one-
fourth-inch cube transformer were found to be satisfactory (see Figure 31). Dur-
ing this phase of the testing it became evident that the Rlga resistance could be

determined directly by allowing its value to be approximately equal to one-fourth
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the resistance of the transformer secondary impedance. The offset could then be

readily adjusted by the insertion of a low value current through the resistor RygaT-

Combinations of PWM, power driver, and load were tested. The results are shown
in Figures 32 through 40. The results obtained using the A 709 version of the
PWM (Figure 8) are shown in Figure 41, and the results obtained using the A 711

comparator version of the PWM (Figure 9) are shown in Figure 42.

In several dynamic tests, the power driver failed while moving repeatedly through
null. Studies at GAC and Norden show that voltage breakdown problems in the in-

tegrated circuit may be the cause of this behavior.

Breadboards that incorporated the changes believed to be desirable were designed.

The circuit configuration used is shown in Figure 43.
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SECTION V. CONCLUSIONS

The NM 1043 power driver was found to be inadequate to drive the two-ampere
torquer load for which it was originally designed. However, it was found to be
more than adequate to drive the 0.6-ampere torquer used in some NASA applica-

tions.

The test program resulted in the formulation of final design requirements for the
PWM and power driver units to be delivered under NASA prime contract NAS 8-
20595. Figure 44 shows a schematic of the completely integrated PWM. This
unit contains the triangle wave generator, positive regulator, and PWM. The
external components required include a small transformer, two select-at-test re-
sistors, and four small ceramic capacitors. The finalized schematic of the
power driver, which includes the additional transistor in each side, is shown in

Figure 45.

Based on the tests developed under contract NAS 8-20205, a complete set of test
instructions were written to test the devices being fabricated and delivered under
contract NAS 8-20595.
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APPENDIX A. OPERATION OF THE INTEGRATED PULSE
WIDTH MODULATOR

To better understand the operation of the PWM, consider the circuit shown in Fig-
gure A-1. A d-c error is added to a triangular input signal in a circuit that has
two thresholds. The circuit as shown is represented by ideal NPN-PNP transis-
tors, which are assumed to have very high current gain. The two thresholds are
set by the base-emitter potentials of the two transistors. As shown in Figure
A-2(a), if no error signal is introduced the signal at the bases of the two transis-
tors apprcaches, but does not exceed, the threshold levels. This results in no out-
put from the PWM. If a positive error signal is applied, then the combined signal
at the base of the NPN is greater than the threshold level and an output like the one
shown in Figure A-2(b) results. If a negative error signal is applied, then the com-
bined signal at the base of the PNP is less than the threshold level and an output

like the one shown in Figure A-2(c) results.

With the preceding discussion in mind, consider the section of the PWM shown in

PULSE WIDTH MODULATOR

Ci

ERROR

AVAVAY SIGNAL ~ © T

INPUT o

)

Figure A-1. Simplified Pulse Width Modulator Circuit
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Figure A-3. The triangular wave forms labeled A and B in Figure A-3, which are
applied to the bases of transistors Q8 and Q13, drive the two differential amplifiers.
Figure A-4(a) shows sample wave forms at the bases and collectors of differential
amplifier transistors Q7, Q8, Q13, and Q14 when no error signal is applied. The
collector outputs of differential ampliﬁers 1, 2, 3, and 4 are fed into the two "AND"
circuits shown in Figure A-3. With no error signal applied, "AND" circuit out-
puts 5 and 6 are zero, as shown in Figure A-4(a). If a positive error signal is ap-
plied, the differential output wave forms are as shown in Figure A-4(b). When the
collector wave forms of Q7 and Q14 are summed, the output of Q16 and Q17, which
is the "AND'" function of Q7 and Q14, will be a series of pulses, as shown in Fig-
ure A-4(b). When the collector wave forms of Q8 and Q13 are summed the output

of Q10 and Q11, which is the "AND" function of Q8 and Q13, will always be low. as
shown in Figure A-4(b). Applying anegative error signal results in the outputs shown
in Figure A-4(c). In Figure 44, Q12 and Q18 are used to bias the emitters of Q10,
Q11, Q16, and Q17 at +7.5 volts. This causes the outputs at 5 and 6 in Figure A-3
to be at a 7.5 volt d-c level. Since the power driver requires inputs referenced to
ground, zener diodes Q9 and Q15 are used to provide the necessary level shift to

operate from ground.

The wave forms shown in Figure A-4 represent an idealized operation that does not
account for the output pulses obtained at null. Figure A-5 shows output wave forms
that are more typical of the true operation of the PWM. The voltage at the emitters

of the "AND" circuits is the reference voltage (V ), since the outputs of the dif-

REF
ferential amplifiers must allow the base inputs to the ""AND" circuits to reach a

voltage level 0.6 volt higher before the transistors will conduct. For both of the
REF’ the "AND"

circuit output will be high, as shown in Figure A-5. If either "AND" circuit input

"AND" circuits, if each input is less than 0.6 volt higher than V

is more than 0.6 volt higher than V the "AND'" circuit output is zero. In the

REF’
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A —/‘VAVAV DEAD
ZONE
ADJUST

ERROR
SIGNAL

INSERT SMALL
__ CURRENT HERE

.||l__<

" TO COMPENSATE
FOR OFFSET

SECTION QOUTLINED IN DASHED LINES ARE AND CIRCUITS.
BOTH INPUTS MUST BE LOW BEFORE THE OUTPUT CAN BE HIGH,

Figure A-3. Differential Section of PWM
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REF
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VRer
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{ A 0.6
f t
T \___/ \
V Rer
{
E 0.6
P . 1
\ - \_
VReF
5
— .
6 1
WHENEVER OUTPUTS 2 AND 3 ARE LESS THAN Ve
- THEN OUTPUT 5 WILL BE POSITIVE.
WHENEVER OUTPUTS | AND 4 ARE LESS THAN V.o
THEN OUTPUT 6 WILL BE POSITIVE.
Figure A-5. PWM Pulses at Null
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actual operation of the PWM at null, the output pulses can be slightly skewed and/
or translated, because of the variation of transistor characteristics in the PWM
chip itself. In Figure 44, resistors R19 and R20 allow for adjustment of the dif-

ferential amplifier emitter voltages to obtain the required overlap of the output

pulses.

The triangular wave input to the PWM is generated from a 4.8 kHz, 10 VRMS sig-
nal. This signal feeds a Darlington which squares the output to a peak voltage de-

termined by the PWM section consisting of R6, R8, and Q3.

A 15k Qresistor, 0.039 uF capacitor, and a Bourns transformer take the square

wave output of the Darlington and provide the required triangular wave output.

Temperature compensation of the PWM is accomplished through a unique design
feature. Consider the portions of the PWM circuit shown in Figure A-6. Writing

the loop equation for the circuit in Figure A-6(a) yields

Vener diode * VBE * VBE " IER1 ~ VBE T 0
IERl - Vzener diode * VBE
IE - Vzener diode * VBE
R
1
where R1 = R17 + Rsmall + Rsmall’ The threshold voltage at the base of Q17
is VAT = VS - Vzener diode VBE‘ From Figure A-7, if both pulse wave forms

are less than VS - VZD + VBE’ then an output pulse occurs.

Thus the threshold voltage is VAT = VS - VZD + VBE' In Figure A-6(b), if the
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Figure A-6. Temperature Compensation Section
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Figure A-7. Temperature Effect on Output Pulses
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transistor Q17 is non-conductive, the voltage at A is determined by IC where IC =
1,/2 IE' Then

\"4 +V

. 1, _1Yzp*VpE
c 2“2 7 g,
. Vb * VBE
c ™ 2R
1
and
V, = Vg - IGR9
A" +V
) zp * VBE
e (5

If the resistor value R9 is equal to 2R1, then the voltage at A is

vV, =V

A - Vg

s”Vzp ~ VBE "

From Figure A-7, when the inputs to the bases of Q17 and Q16 are at VA = Vg -
Vzp -~ Vg and Vy = Vg~ Vgp + Vpg
width of this pulse is equal to the time it takes the base signal of Q17 to reach the
threshold voltage VAT‘

put pulse returns to zero. If a change in temperature occurs, say a positive in-

respectively, an output pulse occurs. The
Once the base signal of Q17 is greater than VAT’ the out-
crease, then the zener diode voltage will increase by an amount AV, and the voltage

s Vzpr
creased by an amount AV as shown in Figure A-7. If the base-emitter voltage of

difference, V will decrease by AV. Thus the reference voltage has de-

Q17 did not change at all, then the threshold level would be +VBE above the new
reference voltage. However, the base-emitter voltage of the transistor goes down

with an increase in temperature, so that the new threshold voltage is equal to
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VS - VZD + VBE - 2AV as shown in Figure A-7. Similar reasoning accounts for

the change in the Vg - VZ -V level. Due to the circuit configuration shown in

S D BE
Figure A-6(a), the pulse wave forms at points 1 and 4 also shift by an amount 2AV,

as shown in Figure A-T.

Since the pulse wave forms now intersect the new threshold voltage at the same
point and their slopes have not changed, the output pulse wave forms are still equal
to those obtained at the lower temperature. Thus the circuit is temperature-com-

pensated.

In the actual device, however, R9 and 2R1 are not exactly identical. This fact will
not adversely affect the operation of the PWM if the ratio of the two resistors re-
mains constant over the temperature range. Since the resistors show similar ef-
fects from temperature variations their ratios do remain constant, and the thres-
hold voltage is only dependent upon the zener diode and base-emitter variations with
temperature. Due to the diffusion process and the proximity of the devices on the
chip, the zener diode voltages and the base-emitter voltages are similarly affected
by temperature variations. Thus the currents IC and IE will identically track the
incremental changes incurred with temperature variations. Application of the
same reasoning to the remaining identical positions of the PWM makes it apparent
that the PWM possesses temperature compensation inherent in its design. Thus

stable operation over the temperature range is assured.

The gain of the PWM in general terms is some constant C times the inverse of the
supply voltage, i.e. G = C(1/V) where the units of G are pulse width/volt. The
gain of the power driver is a function of the current through the load and pulse
width input, i.e. K = (V/R)/Pulse Width, where the units are amperes/pulse
width. Multiplying the two gain terms yields the overall PWM - power driver gain.
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- oL V/R pulse width)
GK = C(V) (pulse width)( volt ampere
1
GK = C<§) ampere/volt

The expression for GK implies that the PWM - power driver gain is independent of

power supply variations.
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APPENDIX B. OPERATION OF THE POWER DRIVER

To understand the operation of the power driver, consider the circuit shown in Fig-
ure B-1 and recall the previous discussion of the PWM. When a positive error
signal is applied to the PWM, the signal at the base of the NPN exceeds the thres-

hold level for a short period of time. This results in an output that operates the

POWER SWITCH

r~
/\/\/\ “E ERROR
SIGNAL . I '
INPUT e
° §

TORQUER
LOAD

—_———— e e e e e e e ————

Figure B-1. Simplified PWM - Power Driver Circuit
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break-before-make relay and applies a voltage to the torquer load. If a negative
error signal is applied, the resulting output again operates the break-before-make
relay and applies across the load a voltage which is reversed from that obtained by

a positive pulse.

With the above discussion in mind, consider the final integrated driver version
shown in Figure 45. The circuit consists of two symmetrical sections that can
drive the load to either polarity by the application of the proper control pulses. The
circuit is designed so that for no-signal input the current in R7 drives Darlington
transistors Q7 and Q9 and transistor Q15 into saturation. A similar current
through R8 drives Darlington transistors Q8 and Q10 and transistor Q16 into satu-
ration on the right-hand side of the circuit. Thus output terminals 6 and 2 are con-
nected to ground terminals 7 and 3 respectively. For this particular circuit

the top half of the switch is normally opzn and the bottom half of the switch is
normally closed. To switch the device, a minimum input of 3 volts is required.
For an input at terminal 8, the initial current path is through resistors R5, R9,
and R11. These resistor values are such that the voltage across R11 reaches

0.6 volt, while the voltage across resistors R5 and R9 is less than 0.6 volt. This
allows transistors Q11 and Q13 to begin turning on and gives transistor Q15 time to
begin turning off before transistor Q3 and Q1 turn on. When transistors Q11 and
Q13 turn on, they shunt the base current supplied to the Darlington transistors to
ground, causing the Darlington to turn off. Since Q15 is turned off before Q3 and
Q1 are turned on, transistors Q3 and Q1 supply current to drive Q5 into saturation,
which provides a current path from the supply through Q5, the load, and transis-
tors Q8 and Q10 to ground. The current thus established will continue to flow as
long as the input signal is applied. The top section of the right-hand half of the

switch remains open, since no input signal was applied at input terminal 4.

As Q3 turns off, transistors Q1, Q11, Q13, and Q5 are also turned off. Transistor
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Q15 will again turn on, drawing any residual current from the base of Q5 due to
bias current flowing through R7 into the base of Q7 saturating Darlington transis-
tors Q7 and Q9. With a resistive load, removal of the input will allow the switch
to return to its normal mode. With an inductive load, however, current will con-
tinue to flow in the established direction. This presents a problem, as the voltage
across Darlington transistor Q10 will rise momentarily to a very high value. To
eliminate this and provide a current path, diodes CR1, CR2, CR3, and CR4 are
put in parallel with the switching transistors. The diode CR3 also serves the pur-
pose of keeping Darlington transistors Q7 and Q9 from turning on until the energy
stored in the inductive load is dissipated. Diode CR4 provides the same function
to the other half of the switch. Operation of the other half of the switch when an
input is applied at terminal 4 is identical to that previously described, except that

the voltage across the load is reversed.

A detailed explanation of the dead zone and temperature effects on the operation
may be found in GER-11752S6.
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